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Abstract

Let f : 2X → R+ be a monotone submodular set function, and let (X, I) be a matroid.
We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2-
approximation [14] for this problem. For certain special cases, e.g. max|S|≤k f(S), the greedy
algorithm yields a (1− 1/e)-approximation. It is known that this is optimal both in the value
oracle model (where the only access to f is through a black box returning f(S) for a given set
S) [28], and also for explicitly posed instances assuming P 6= NP [10].

In this paper, we provide a randomized (1 − 1/e)-approximation for any monotone sub-
modular function and an arbitrary matroid. The algorithm works in the value oracle model.
Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [1],
and a continuous greedy process that might be of independent interest.

As a special case, our algorithm implies an optimal approximation for the Submodular
Welfare Problem in the value oracle model [32]. As a second application, we show that the
Generalized Assignment Problem (GAP) is also a special case; although the reduction requires
|X| to be exponential in the original problem size, we are able to achieve a (1 − 1/e − o(1))-
approximation for GAP, simplifying previously known algorithms. Additionally, the reduction
enables us to obtain approximation algorithms for variants of GAP with more general con-
straints.

Keywords: monotone submodular set function, matroid, social welfare, generalized assign-
ment problem, approximation algorithm.

1 Introduction

This paper is motivated by the following optimization problem. We are given a ground set X of
n elements and a monotone submodular set function f : 2X → R+. A function f is submodular
iff

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)
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for all A,B ⊆ X. We restrict attention to monotone (by which we mean non-decreasing) functions,
that is f(A) ≤ f(B) for all A ⊆ B and f(∅) = 0. We are also given an independence family I ⊆ 2X ,
a family of subsets that is downward closed, that is, A ∈ I and B ⊆ A implies that B ∈ I. A
set A is independent iff A ∈ I. We are primarily interested in the special case where I is the
collection of independent sets of a given matroid M = (X, I) (we give a definition of a matroid
in Section 2.1). For computational purposes we will assume that f and I are specified as oracles
although in specific settings of interest, an explicit description is often available.

Submodular maximization subject to a matroid. The problem (or rather class of prob-
lems) of interest in this paper is the problem of maximizing f(S) over the independent sets S ∈ I;
in other words we wish to find maxS∈I f(S). We denote by SUB-M the problem where f is
monotone submodular andM = (X, I) is a matroid.

The problem of maximizing a submodular set function subject to independence constraints
has been studied extensively. A number of interesting and useful combinatorial optimization
problems, including NP-hard problems, are special cases. Some notable examples are Maximum
Independent Set in a matroid, Matroid Intersection, and Max-k-cover. Below we describe some
candidates for f and I that arise frequently in applications.
Modular functions: A function f : 2X → R+ is modular iff f(A)+f(B) = f(A∪B)+f(A∩B) for
all A,B. If f is modular then there is a weight function w : X → R+ such that f(A) = w(A) =∑

e∈A w(e). Such functions are also referred to as additive or linear.
Set Systems and Coverage: Given a universe U and n subsets A1, A2, . . . , An ⊂ U , we obtain
several natural submodular functions on the set X = {1, 2, . . . , n}. First, the coverage function
f given by f(S) = | ∪i∈S Ai| is submodular. This naturally extends to the weighted coverage
function; given a non-negative weight function w : U → R+, f(S) = w(∪i∈SAi). We obtain a
multi-cover version as follows. For x ∈ U let k(x) be an integer. For each x ∈ U and Ai let
c(Ai, x) = 1 if x ∈ Ai and 0 if x /∈ Ai. Given S ⊆ X, let c′(S, x), the coverage of x under S, be
defined as c′(S, x) = min{k(x),

∑
i∈S c(Ai, x)}. The function f(S) =

∑
x∈U c′(S, x) is submodular.

A related function defined by f(S) =
∑

x∈U maxi∈S w(Ai, x) is also submodular, where w(Ai, x)
is a non-negative weight for Ai covering x.
Weighted rank functions of matroids and their sums: The rank function of a matroid M =
(X, I), rM(A) = max{|S| : S ⊆ A,S ∈ I}, is submodular. Given w : X → R+, the weighted
rank function defined by rM,w(A) = max{w(S) : S ⊆ A,S ∈ I} is a submodular function.
Submodularity is preserved by taking a sum, and hence a sum of weighted rank functions is also
submodular. The functions of coverage type mentioned above are captured by this class. However,
the class does not include all monotone submodular functions.
Matroid Constraint: An independence family of particular interest is one induced by a matroid
M = (X, I). A very simple matroid constraint that is of much importance in applications
[7, 27, 3, 4, 15] is the partition matroid: X is partitioned into ` sets X1, X2, . . . , X` with associated
integers k1, k2, . . . , k`, and a set A ⊆ X is independent iff |A ∩Xi| ≤ ki. In fact even the case of
` = 1 (the uniform matroid) is of interest.
Intersection of Matroids: A natural generalization of the single matroid case is obtained when
we consider intersections of different matroids M1 = (X, I1),M2 = (X, I2), . . . ,Mp = (X, Ip)
on the same ground set X. That is, I = {A ⊆ X | A = ∩iAi and Ai ∈ Ii, 1 ≤ i ≤ p}. A simple
example is the family of hypergraph matchings in a p-partite graph (p = 2 is simply the family
of matchings in a bipartite graph).
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p-systems: More general independence families parametrized by an integer p can be defined. We
follow the definition of [19, 21]. Given an independence family I, let B be the set of maximal
independent sets in I, that is B = {A ∈ I | there is no A′ ∈ I such that A′ ⊃ A}. Then I is a
p-system if for all Y ⊆ X, maxA∈B,A⊆Y |A|

minA∈B,A⊆Y |A| ≤ p. p-systems properly generalize several simpler and
easier to understand special cases including families obtained from the intersection of p matroids.
We discuss some other special cases in Section A. The set of matchings in a general graph form
a 2-system. Similarly the set of matchings in a hypergraph with edges of cardinality at most p
form a p-system.

The Greedy Algorithm. A simple greedy algorithm is quite natural for the problem max{f(S) :
S ∈ I}. The algorithm incrementally builds a solution (without backtracking) starting with
the empty set. In each iteration it adds an element that most improves the current solution
(according to f) while maintaining independence of the solution. The greedy algorithm yields
a 1/p-approximation for maximizing a modular function subject to a p-independence constraint
[19, 21]. For submodular functions, the greedy algorithm yields a ratio of 1/(p + 1) [14]1. These
ratios for Greedy are tight for all p, even for intersections of p matroids. For large but fixed p, the
p-dimensional matching problem is NP-hard to approximate to within an Ω(log p/p) factor [18].

For the problem of maximizing a submodular function subject to a matroid constraint (special
case of p = 1), the greedy algorithm achieves a ratio of 1/2. When the matroid is uniform, i.e. the
problem is max{f(S) : |S| ≤ k}, the greedy algorithm yields a (1− 1/e)-approximation and this
is optimal in the value oracle model [27, 28]. This special case already captures the max-k-cover
problem (with f(S) of the coverage type) for which it is shown in [10] that no (1 − 1/e + ε)-
approximation is possible for any constant ε > 0, unless P = NP . Thus it is a natural to ask
whether a 1−1/e approximation is achievable for any matroid, or whether there is a gap between
the case of uniform matroids and general matroids. We resolve the question in this paper.

Theorem 1.1. There is a randomized algorithm which gives with high probability a (1 − 1/e)-
approximation to the problem max{f(S) : S ∈ I}, where f : 2X → R+ is a monotone submodular
function given by a value oracle, and M = (X, I) is a matroid given by a membership oracle.

Our main tools are the pipage rounding technique of Ageev and Sviridenko [1], and a continuous
greedy process. We give an overview of these techniques in Section 2.

Applications. As a consequence we obtain (1 − 1/e)-approximation algorithms for a number
of optimization problems. An immediate application is the Submodular Welfare Problem which
can be cast as a submodular maximization problem subject to a partition matroid [22]. In this
problem, we are given n players and m items. Each player i has a submodular utility function
wi : 2[m] → R+. The goal is to allocate items to the agents to maximize the total utility∑n

i=1 wi(Si). It was known that the greedy algorithm yields a 1/2-approximation [22], while a
(1− 1/e + ε)-approximation in the value oracle model, for any fixed ε > 0, would imply P = NP
[20]. Improvements over the 1/2-approximation were achieved only in special cases or using a
stronger computation model [8, 12]. Our work implies the following optimal result, which first
appeared in [32].

Theorem 1.2. There is a randomized algorithm which achieves with high probability a (1− 1/e)-
approximation for the Submodular Welfare Problem, in the value oracle model.

1We give a proof of this result in the appendix for the sake of completeness. If only an α-approximate oracle
(α ≤ 1) is available for the function evaluation, the ratio obtained is α/(p + α). Several old and recent applications
of the greedy algorithm can be explained using this observation.
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Another application of Theorem 1.1 is related to variants of the Generalized Assignment
Problem (GAP). In GAP we are given n bins and m items. Each item i specifies a size sij

and a value (or profit) vij for each bin j. Each bin has capacity 1 and the goal is to assign
a subset of items to bins such that the bin capacities are not violated and the profit of the
assignment is maximized. Recently Fleischer et al. [15] gave a (1 − 1/e)-approximation for this
problem, improving upon a previous 1/2-approximation [5]. We rederive the same ratio casting
the problem as a special case of submodular function maximization. Moreover, our techniques
allow us to obtain a simpler (1−1/e−o(1))-approximation for GAP, even under any given matroid
constraint on the bins. A simple example is GAP with the added constraint that at most k of the
n bins be used.

Theorem 1.3. Let A be an instance of GAP with n bins and m items and let B be the set of
bins. Let M = (B, I) be a matroid on B. There is a randomized (1− 1/e− o(1))-approximation
to find a maximum profit assignment to bins such that the subset S ⊆ B of bins that are used in
the assignment satisfy the constraint S ∈ I.

We note that the approximation ratio for GAP has been improved to 1− 1/e + δ for a small
δ > 0 in [12] using the same LP as in [15]. However, the algorithm in [15] extends to even more
general class of problems, the Separable Assignment Problem (SAP). For SAP, it is shown in [15]
that it is NP-hard to obtain an approximation ratio of 1 − 1/e + ε for any constant ε > 0. Our
framework also extends to the Separable Assignment Problem, and hence 1 − 1/e is the best
approximation factor one can achieve with this approach. We discuss this further in Section 4.2.

2 Overview of techniques

We start with an overview of our approach to the problem of maximizing a monotone submodular
function subject to a matroid constraint.

2.1 Preliminaries

Submodular functions. A function f : 2X → R is submodular if for all A,B ⊆ X,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).

Given a submodular function f : 2X → R and A ⊂ X, the function fA defined by fA(S) =
f(S ∪ A)− f(A) is also submodular. Further, if f is monotone, fA is also monotone. For i ∈ X,
we abbreviate S ∪ {i} by S + i. By fA(i), we denote the “marginal value” f(A + i)− f(A). For
monotone functions, submodularity is equivalent to fA(i) being non-increasing as a function of A
for every fixed i.

Smooth submodular functions. As a continuous analogy, Wolsey [34] defines submodularity
for a function F : [0, 1]X → R+ as follows:

F (x ∨ y) + F (x ∧ y) ≤ F (x) + F (y) (1)

where (x ∨ y)i = max{xi, yi} and (x ∧ y)i = min{xi, yi}. Similarly, a function is monotone
if F (x) ≤ F (y) whenever x ≤ y coordinate-wise. In particular, Wolsey works with monotone
submodular functions that are piecewise linear and in addition concave. In this paper, we use a
related property which we call smooth monotone submodularity.
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Definition 2.1. A function F : [0, 1]X → R is smooth monotone submodular if

• F ∈ C2([0, 1]X), i.e. it has second partial derivatives everywhere.

• For each j ∈ X, ∂F
∂yj
≥ 0 everywhere (monotonicity).

• For any i, j ∈ X (possibly equal), ∂2F
∂yi∂yj

≤ 0 everywhere (submodularity).

Thus the gradient ∇F = ( ∂F
∂y1

, . . . , ∂F
∂yn

) is a nonnegative vector. The submodularity condition
∂2F

∂yi∂yj
≤ 0 means that ∂F

∂yj
is non-increasing with respect to yi. It can be seen that this implies (1).

Also, it means that a smooth submodular function is concave along any non-negative direction
vector; however, it is not necessarily concave in all directions.

Extension by expectation. For a monotone submodular set function f : 2X → R+, a canon-
ical extension to a smooth monotone submodular function can be obtained as follows [6]: For
y ∈ [0, 1]X , let ŷ denote a random vector in {0, 1}X where each coordinate is independently
rounded to 1 with probability yj or 0 otherwise. We identify ŷ ∈ {0, 1}X with a set R ⊆ X whose
indicator vector is ŷ = 1R. Then, define

F (y) = E[f(ŷ)] =
∑
R⊆X

f(R)
∏
i∈R

yi

∏
j /∈R

(1− yj).

This is a multilinear polynomial which satisfies

∂F

∂yj
= E[f(ŷ) | ŷj = 1]−E[f(ŷ) | ŷj = 0] ≥ 0

by monotonicity of f . For i 6= j, we get

∂2F

∂yi∂yj
= E[f(ŷ) | ŷi = 1, ŷj = 1]−E[f(ŷ) | ŷi = 1, ŷj = 0]

− E[f(ŷ) | ŷi = 0, ŷj = 1] + E[f(ŷ) | ŷi = 0, ŷj = 0]
≤ 0

by the submodularity of f . In addition, ∂2F
∂yj

2 = 0, since F is multilinear.

Matroids. A matroid is a pairM = (X, I) where I ⊆ 2X and

1. ∀B ∈ I, A ⊂ B ⇒ A ∈ I.

2. ∀A,B ∈ I; |A| < |B| ⇒ ∃x ∈ B \A;A + x ∈ I.

A matroid is a combinatorial abstraction of the notion of linear independence among vectors. By
rM, we denote the rank function ofM:

rM(A) = max{|S| : S ⊆ A,S ∈ I}.

The rank function of a matroid is monotone and submodular. It is analogous to the notion of
dimension in vector spaces.
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Matroid polytopes. We consider polytopes P ⊂ RX
+ with the property that for any x, y,

0 ≤ x ≤ y, y ∈ P ⇒ x ∈ P . We call such a polytope down-monotone. A down-monotone
polytope of particular importance here is the matroid polytope. For a matroid M = (X, I), the
matroid polytope is defined as

P (M) = conv {1I : I ∈ I}.

As shown by Edmonds [9], an equivalent description is

P (M) = {x ≥ 0 : ∀S ⊆ X;
∑
j∈S

xj ≤ rM (S)}

where rM (S) = max{|I| : I ⊆ S & I ∈ I} is the rank function of M. From this description, it is
clear that P (M) is down-monotone.

A base of M is a set S ∈ I such that rM(S) = rM(X). The base polytope of M is given
by B(M) = {y ∈ P (M) | y(X) = rM(X)}. The extreme points of B(M) are the characteristic
vectors of the bases ofM. Given the problem max{f(S) : S ∈ I}, whereM = (X, I) is a matroid,
there always exists an optimum solution S∗ where S∗ is a base of M. Note that this is false if
f is not monotone. Thus, for monotone f , it is equivalent to consider the problem maxS∈B f(S)
where B is the set of bases ofM. See [29] for more details on matroids and polyhedral aspects.

2.2 Our approach

We consider the problem
max{f(S) : S ∈ I}, (2)

where f : 2X → R+ is a monotone submodular function andM = (X, I) is a matroid. Apart from
the greedy algorithm, which yields a 1/2-approximation for this problem, previous approaches
have relied on linear programming. In special cases, such as the case of sums of weighted rank
functions [6], the discrete problem (2) can be replaced by a linear programming problem,

max{
∑

i

cixi : x ∈ P} (3)

where P is a convex polytope. This linear program relies on the structure of a specific variant of
the problem, and typically can be solved exactly or to an arbitrary precision. Then, an optimal
solution of (3) can be rounded to an integral solution S ∈ I, while losing a certain fraction of
the objective value. In the case where f(S) is a sum of weighted rank functions of matroids, we
showed in [6] that using the technique of pipage rounding, we can recover an integral solution of
value at least (1− 1/e)OPT .

For a monotone submodular function f(S) given by a value oracle, it is not obvious how
to replace (2) by a linear program. Nonetheless, we have a generic way of replacing a discrete
function f(S) by a continuous function: the extension F (y) = E[f(ŷ)] described in Section 2.1.
Using this extension, we obtain a non-linear optimization problem:

max{F (y) : y ∈ P (M)} (4)

where P (M) is the matroid polytope of M. If F (y) were a concave function, we would be in a
good shape to deal with this continuous problem, using generic non-linear optimization techniques.
(Although it is still not clear how we would then convert a fractional solution to a discrete one.)
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However, F (y) is not a concave function. As we discussed in Section 2.1, F (y) is a smooth
submodular function, and it particular it is a harmonic function which means that it is concave
in certain directions while convex in others. This will be actually useful both for treating the
continuous problem and rounding its fractional solution.

Our solution.

1. We use a continuous greedy process to approximate max{F (y) : y ∈ P (M)} within a factor
of 1− 1/e.

2. We use the pipage rounding technique to convert a fractional solution y ∈ P (M) to a discrete
solution S of value f(S) ≥ F (y) ≥ (1− 1/e)OPT .

We remark that the second stage of the solution is identical to the one that we used in [6] in
the case of sums of weighted rank functions. The first stage has been discovered more recently; it
first appeared in [32] in the context of the Submodular Welfare Problem. Next, we describe these
two stages of our solution at a conceptual level before giving detailed proofs in Section 3.

2.3 The continuous greedy process

We consider any down-monotone polytope P and a smooth monotone submodular function F .
For concreteness, the reader may think of the matroid polytope P (M) and the function F (y) =
E[f(ŷ)] defined in Section 2.1. Our aim is to define a process that runs continuously, depending
only on local properties of F , and produces a point y ∈ P approximating the optimum OPT =
max{F (y) : y ∈ P}. We propose to move in the direction of a vector constrained by P which
maximizes the local gain.

The continuous greedy process. We view the process as a particle starting at y(0) = 0 and
following a certain flow over a unit time interval:

dy

dt
= v(y),

where v(y) is defined as
v(y) = argmaxv∈P (v · ∇F (y)).

Claim. y(1) ∈ P and F (y(1)) ≥ (1− 1/e)OPT .
First of all, the trajectory for t ∈ [0, 1] is contained in P , since

y(t) =
∫ t

0
v(y(τ))dτ

is a convex linear combination of vectors in P . To prove the approximation guarantee, fix a point
y and suppose that x∗ ∈ P is the true optimum, OPT = F (x∗). The essence of our analysis is
that the rate of increase in F (y) is at least as much as the deficit OPT − F (y). This kind of
behavior always leads to a factor of 1− 1/e, as we show below.

Consider a direction v∗ = (x∗ ∨ y) − y = (x∗ − y) ∨ 0. This is a nonnegative vector; since
v∗ ≤ x∗ ∈ P and P is down-monotone, we also have v∗ ∈ P . By monotonicity, F (y + v∗) =
F (x∗ ∨ y) ≥ F (x∗) = OPT . Consider the ray of direction v∗ starting at y, and the function
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F (y + ξv∗), ξ ≥ 0. The directional derivative of F along this ray is dF
dξ = v∗ · ∇F . Since F is

smooth submodular and v∗ is nonnegative, F (y + ξv∗) is concave in ξ and dF
dξ is non-increasing.

By concavity, F (y + v∗) − F (y) ≤ dF
dξ

∣∣
ξ=0

= v∗ · ∇F (y). Since v∗ ∈ P , and v(y) ∈ P maximizes
v · ∇F (y) over all vectors v ∈ P , we get

v(y) · ∇F (y) ≥ v∗ · ∇F (y) ≥ F (y + v∗)− F (y) ≥ OPT − F (y). (5)

Now let us return to our continuous process and analyze F (y(t)). By the chain rule and using
(5), we get

dF

dt
=

∑
j

∂F

∂yj

dyj

dt
= v(y(t)) · ∇F (y(t)) ≥ OPT − F (y(t)).

This means that F (y(t)) dominates the solution of the differential equation dφ
dt = OPT − φ(t),

φ(0) = 0, which is φ(t) = (1− e−t)OPT . This proves F (y(t)) ≥ (1− e−t)OPT .
The direction v(y) at each point is determined by maximizing a linear function v ·∇F (y) over

v ∈ P . In the case of a matroid polytope P (M), this problem can be solved very efficiently. We
can assume that v(y) is a vertex of P and furthermore, since ∇F is a nonnegative vector, that this
vertex corresponds to a basis ofM. Hence, without loss of generality v(y) is contained in B(M),
the basis polytope, and it can be found by the greedy algorithm for maximum-weight basis in a
matroid.

Remark. Wolsey’s continuous greedy algorithm [34] can be viewed as a greedy process guided
by v(y) = ej , where ∂F

∂yj
is the maximum partial derivative out of those where yj can be still

increased. In other words, only one coordinate is being increased at a time. In our setting, with
F (y) = E[f(ŷ)], it can be seen that yj will increase up to its maximal possible value and then a
new coordinate will be selected. This is equivalent to the classical greedy algorithm which gives
a 1/2-approximation.

2.4 Pipage rounding

Ageev and Sviridenko [1] developed an elegant technique for rounding solutions of linear and non-
linear programs that they called “pipage rounding”. Subsequently, Srinivasan [31] and Gandhi et
al. [23] interpreted some applications of pipage rounding as a deterministic variant of dependent
randomized rounding. In a typical scenario, randomly rounding a fractional solution of a linear
program does not preserve the feasibility of constraints, in particular equality constraints. Nev-
ertheless, the techniques of [1, 31, 23] show that randomized rounding can be applied in a certain
controlled way to guide a solution that respects certain class of constraints. In this paper we show
that the rounding framework applies quite naturally to our problem. Further, our analysis also
reveals the important role of submodularity in this context.

In our setting, we have a fractional solution of the problem max{F (y) : y ∈ P (M)} where
F (y) = E[f(ŷ)]. We wish to round a fractional solution y∗ ∈ P (M) to a discrete solution S ∈ I.
In other words we want to go from a point inside P (M) to a vertex of the polytope. As we argued
above, we can assume that y∗ ∈ B(M), i.e. it is a convex linear combination of bases ofM.

The basis polytope has a particular structure: it is known for example that the edges of the
basis polytope are all of the form (1I ,1J), where J is a basis obtained from I by swapping one
element for another [29]. This implies (and we will argue about this more precisely in Section 3.2)
that it is possible to move from any point y ∈ B(M) to a vertex in a sequence of moves, where the
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direction in each move is given by a vector ei − ej , where ei = (0, . . . , 0, 1, 0, . . . , 0) is a canonical
basis vector. Moreover, in each step we have a choice of either ei − ej or ej − ei. The crucial
property of F (y) that makes this procedure work is the following.

Claim. For any y ∈ [0, 1]X and i, j ∈ X, the function F y
ij(t) = F (y + t(ei − ej)) is convex.

We prove this by considering the properties of F (y) = E[f(ŷ)]. By differentiating F y
ij(t) twice, we

obtain
d2F y

ij

dt2
=

∑
α,β

∂2F

∂yα∂yβ
(ei − ej)α(ei − ej)β =

∂2F

∂yi
2
− 2

∂2F

∂yi∂yj
+

∂2F

∂yj
2
.

As we discussed in Section 2.1, ∂2F
∂yi

2 = ∂2F
∂yj

2 = 0, while ∂2F
∂yi∂yj

≤ 0. Therefore,
d2F y

ij

dt2
≥ 0 and the

function F y
ij is convex.

The convexity of F y
ij(t) = F (y + t(ei−ej)) allows us in each step to choose one of two possible

directions, ei − ej or ej − ei, so that the value of F (y) does not decrease. Eventually, we reach a
vertex of the polytope and hence a discrete solution such that f(S) ≥ F (y∗) ≥ (1−1/e)OPT . We
will in fact present a randomized variant of this technique, where we choose a random direction
in each step. A suitable choice of probabilities will ensure that we never lose in expectation. We
defer further details to Section 3.2.

3 The algorithm for submodular maximization subject to a ma-
troid contraint

Here we describe in detail the two main components of our algorithm. On a high level, the
algorithm works as follows.

The Algorithm.
Given: matroid M = (X, I) (membership oracle), monotone submodular f : 2X → R+ (value
oracle).

1. Run ContinuousGreedy(f,M) to obtain a fractional solution y∗ ∈ B(M).

2. Run PipageRound(M, y∗) to obtain a discrete solution S ∈ I.

3.1 The continuous greedy algorithm

The first stage of our algorithm handles the continuous optimization problem max{F (y) : y ∈
P (M)}. The continuous greedy process (Section 2.3) provides a guide on how to design our
algorithm. It remains to deal with two issues.

• To obtain a finite algorithm, we need to discretize the time scale. This introduces some
technical issues regarding the granularity of our discretization and the error incurred.

• In each step, we need to find v(y) = argmaxv∈P (M)(v · ∇F (y)). Apart from estimating ∇F
(which can be done by random sampling), observe that this amounts to a linear optimization
problem over P (M). This means finding a maximum-weight independent set in a matroid,
a task which can be solved easily.

9



Algorithm ContinuousGreedy(f,M):

1. Let δ = 1/n2 where n = |X|. Start with t = 0 and y(0) = 0.

2. Let R(t) contain each j independently with probability yj(t).
For each j ∈ X, estimate

ωj(t) = E[fR(t)(j)].

by taking the average of n5 independent samples.

3. Let I(t) be a maximum-weight independent set in M, according to the weights ωj(t). We
can find this by the greedy algorithm. Let

y(t + δ) = y(t) + δ · 1I(t).

4. Increment t := t + δ; if t < 1, go back to Step 2. Otherwise, return y(1).

The fractional solution found by the continuous greedy algorithm is a convex combination of
independent sets, y(1) = δ

∑
t 1I(t) ∈ P (M). Since the independent sets I(t) are obtained by

maximization with non-negative weights, we can assume that each I(t) is a basis ofM. Therefore,
y(1) ∈ B(M).

The crucial inequality that allows us to analyze the performance of this stage is the following
lemma (analogous to Eq. (5)).

Lemma 3.1. Let OPT = maxS∈I f(S). Consider any y ∈ [0, 1]X and let R denote a random set
corresponding to ŷ, with elements sampled independently according to yj. Then

OPT ≤ F (y) + max
I∈I

∑
j∈I

E[fR(j)].

Proof. Fix an optimal solution O ∈ I. By submodularity, we have OPT = f(O) ≤ f(R) +∑
j∈O fR(j) for any set R. By taking the expectation over a random R as above, OPT ≤

E[f(R) +
∑

j∈O fR(j)] = F (y) +
∑

j∈O E[fR(j)] ≤ F (y) + maxI∈I
∑

j∈I E[fR(j)].

Given this lemma, we prove the main result of this section.

Lemma 3.2. The fractional solution y found by the Continuous Greedy Algorithm satisfies with
high probability

F (y) = E[f(ŷ)] ≥
(

1− 1
e
− o(1)

)
·OPT.

Proof. We start with F (y(0)) = 0. Our goal is to estimate how much F (y(t)) increases during one
step of the algorithm. Consider a random set R(t) corresponding to ŷ(t), and an independently
random set D(t) that contains each item j independently with probability ∆j(t) = yj(t+δ)−yj(t).
I.e., ∆(t) = y(t + δ) − y(t) = δ · 1I(t) and D(t) is a random subset of I(t) where each element
appears independently with probability δ. It can be seen easily that F (y(t+δ)) = E[f(R(t+δ))] ≥
E[f(R(t)∪D(t))]. This follows from monotonicity, because R(t+δ) contains items independently
with probabilities yj(t) + ∆j(t), while R(t) ∪ D(t) contains items independently with (smaller)
probabilities 1− (1− yj(t))(1−∆j(t)).
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Now we are ready to estimate how much F (y) gains at time t. It is important that the
probability that any item appears in D(t) is very small, so we can focus on the contributions from
sets D(t) that turn out to be singletons. From the discussion above, we obtain

F (y(t + δ))− F (y(t)) ≥ E[f(R(t) ∪D(t))− f(R(t))] ≥
∑

j

Pr[D(t) = {j}] E[fR(t)(j)]

=
∑

j∈I(t)

δ(1− δ)|I(t)|−1E[fR(t)(j)] ≥ δ(1− nδ)
∑

j∈I(t)

E[fR(t)(j)].

Recall that I(t) is an independent set maximizing
∑

j∈I ωj(t) where ωj(t) are our estimates of
E[fR(t)(j)]. By standard Chernoff bounds, the probability that the error in any estimate is more
than OPT/n2 is exponentially small in n (note that OPT ≥ maxR,j fR(j)). Hence, w.h.p. we
incur an error of at most OPT/n in our computation of the maximum-weight independent set.
Then we can write

F (y(t + δ))− F (y(t)) ≥ δ(1− nδ)

max
I∈I

∑
j∈I

E[fR(t)(j)]−OPT/n


≥ δ(1− 1/n)(OPT − F (y(t))−OPT/n)
≥ δ( ˜OPT − F (y(t)))

using Lemma 3.1, δ = 1/n2 and setting ˜OPT = (1− 2/n)OPT . From here, ˜OPT −F (y(t+ δ)) ≤
(1− δ)( ˜OPT −F (y(t))) and by induction, ˜OPT −F (y(kδ)) ≤ (1− δ)k ˜OPT . For k = 1/δ, we get

˜OPT − F (y(1)) ≤ (1− δ)1/δ ˜OPT ≤ 1
e

˜OPT .

Therefore, F (y(1)) ≥ (1− 1/e) ˜OPT ≥ (1− 1/e− o(1))OPT .

Remark. By a more careful analysis, we can eliminate the error term and achieve a clean
approximation factor of 1−1/e. We can argue as follows: Rather than R(t)∪D(t), we can consider
R(t) ∪ D̃(t), where D̃(t) is independent of R(t) and contains each element j with probability
∆j(t)(1 + yj(t)). It can be verified that R(t) ∪ D̃(t) ⊆ R(t + δ). (We would get equality if we
sampled D̃(t) with probabilities ∆j(t)/(1− yj(t)), but we use a smaller value ∆j(t)(1 + yj(t)) so
that the probability does not exceed 2δ.) D̃(t) is a random subset of I(t) and the size of I(t) is
d = rank(M). We can repeat the analysis with D̃(t) and we get

F (y(t + δ))− F (y(t)) ≥
∑

j

Pr[D̃(t) = {j}]E[fR(t)(j)] ≥ δ(1− 2dδ)
∑

j∈I(t)

E[fR(t)(j)](1 + yj(t)).

Observe that we get a small gain over the previous analysis as the fractional variables yj(t)
increase.

Denote ω∗(t) = maxj E[fR(t)(j)]. By Lemma 3.1 and submodularity, we know that at any
time, ω∗(t) ≥ 1

d(OPT − F (y(t))) where d = rank(M) = |I(t)|. Also, if j∗(t) is the element
achieving ω∗(t), we know that yj∗(t)(t) cannot be zero all the time. Even focusing only on the
increments corresponding to j∗(t), at most half of them can be to variables where yj∗(t)(t) < 1

2n ,
otherwise the total contribution to these variables would be more than 1/2 and their sum less
than 1/2 - a contradiction. Let’s call the steps where yj∗(t)(t) < 1

2n ”bad”, and the steps where
yj∗(t)(t) ≥ 1

2n ”good”. We estimate the marginal values E[fR(t)(j)] within δ OPT , so that our
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computation of the maximum-weight basis I(t) is accurate within dδ OPT . In good steps, the
improved analysis gives

F (y(t + δ))− F (y(t)) ≥ δ(1− 2dδ)

 ∑
j∈I(t)

E[fR(t)(j)] + yj∗(t)E[fR(t)(j
∗)]


≥ δ(1− 2dδ)

(
1 +

1
2dn

)
(OPT − F (y(t))− dδOPT )

≥ δ(1− 3dδ)
(

1 +
1

2dn

)
(OPT − F (y(t))).

By taking δ << 1
d2n

, we make this expression bigger than δ(1 + 3dδ)(OPT − F (y(t))). Then, we
can conclude that in good steps, we have

OPT − F (y(t + δ)) ≤ (1− δ(1 + 3dδ))(OPT − F (y(t))),

while in bad steps we get by the standard analysis

OPT − F (y(t + δ)) ≤ (1− δ(1− 3dδ))(OPT − F (y(t))).

Overall, we get

OPT − F (y(1)) ≤ (1− δ + 3dδ2))
1
2δ (1− δ − 3dδ2)

1
2δ OPT ≤ (1− δ)1/δOPT

which means F (y(1)) ≥ (1−(1−δ)1/δ)OPT ≥ (1−1/e)OPT . Finally, observe that even δ = 1/d2

is sufficient to obtain F (y(1)) ≥ (1− 1/e−O(1/d))OPT .

3.2 The pipage rounding algorithm

We start with a point y∗ in the basis polytope B(M). The pipage rounding technique aims to
convert y∗ into an integral solution, corresponding to a vertex of B(M). Given y ∈ [0, 1]n we say
that i is fractional in y if 0 < yi < 1. Our goal is to gradually eliminate all fractional variables.

For y ∈ P (M), a set A ⊆ X is tight if y(A) = rM(A). The following well-known proposition
follows easily from the submodularity of the rank function rM.

Proposition 3.3. If A and B are two tight sets with respect to y then A∩B and A∪B are also
tight with respect to y.

Proof. Using y(A) = rM(A), y(B) = rM(B), y(A ∩ B) ≤ rM(A ∩ B), y(A ∪ B) ≤ rM(A ∪ B),
the submodularity of rM and the linearity of y, we get

y(A) + y(B) = rM(A) + rM(B) ≥ rM(A ∩B) + rM(A ∪B)
≥ y(A ∩B) + y(A ∪B) = y(A) + y(B).

Therefore, all inequalities above must be tight.

We are interested in tight sets that contain a fractional variable. Observe that a tight set
with a fractional variable has at least two fractional variables. Given a tight set T with fractional
variables i, j, we let yij(t) = y + t(ei − ej). i.e. we add t to yi, subtract t from yj and leave the
other values unchanged. We define a function of one variable F y

ij where F y
ij(t) = F (yij(t)). As
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we argued in Section 2.4, F y
ij(t) is convex and hence cannot decrease for both t > 0 and t < 0.

Therefore, it is possible to modify the fractional variables yi, yj by increasing one of them and
decreasing the other. We do this until we hit another constraint of the matroid polytope. The
subroutine HitConstraint performs this task. It will be useful to make the procedure oblivious,
independent of the function F (y), and hence we will randomize this step to achieve a good value
in expectation.

After hitting a new constraint, we obtain a new tight set A. Then we either produce a new
integral variable (in which case we restart with T = X), or we continue with T ∩ A which is a
smaller set and again tight (due to Prop. 3.3).

Subroutine HitConstraint(y, i, j):
Denote A = {A ⊆ X : i ∈ A, j /∈ A};
Find δ = minA∈A(rM(A)− y(A)) and A ∈ A achieving this;
If yj < δ then {δ ← yj , A← {j}};
yi ← yi + δ, yj ← yj − δ;
Return (y, A).

Algorithm PipageRound(y):
While (y is not integral) do

T ← X;
While (T contains fractional variables) do

Pick i, j ∈ T fractional;
(y+, A+)← HitConstraint(y, i, j);
(y−, A−)← HitConstraint(y, j, i);
If (y+ = y− = y) then

T ← T ∩A+

Else
p← ||y+ − y||/||y+ − y−||;
With probability p, {y ← y−, T ← T ∩A−};

Else {y ← y+, T ← T ∩A+};
EndWhile

EndWhile
Output y.

Lemma 3.4. Given y ∈ B(M), PipageRound(y) outputs in polynomial time an integral solu-
tion S ∈ I of value E[f(S)] ≥ F (y).

Proof. The algorithm does not alter a variable yi once yi ∈ {0, 1}. An invariant maintained by
the algorithm is that y ∈ B(M) and T is a tight set. To verify that y ∈ B(M), observe that
y(X) = rM(X) remains unchanged throughout the algorithm; we need to check that y(S) ≤
rM(S) remains satisfied for all sets S. Consider the subroutine HitConstraint. The only sets
whose value y(S) increases are those containing i and not containing j, i.e. S ∈ A. We increase
yi by at most δ = minS∈A(rM(S)−y(S)), therefore y(S) ≤ rM(S) is still satisfied for all sets. We
also make sure that we don’t violate nonnegativity, by checking whether yj < δ. In case yj < δ,
the procedure makes yj zero and returns A = {j}.

Concerning the tightness of T , we initialize T ← X which is tight because y ∈ B(M). After
calling HitConstraint, we obtain sets A+, A− which are tight for y+ and y−, respectively. The
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new set T is obtained by taking an intersection with one of these sets; in any case, we get a new
tight set T at the end of the inner loop, due to Proposition 3.3.

Note that each of the sets A+, A− returned by HitConstraint contains exactly one of the
elements i, j. Therefore, the size of T decreases after the execution of the inner loop. As long as
we do not make any new variable integral, one of the fractional variables yi, yj is still in the new
tight set T and so we can in fact find a pair of fractional variables in T . However, due to the
decreasing size of T , we cannot repeat this more than n− 1 times. At some point, we must make
a new variable integral and then we restart the inner loop with T = X. The outer loop can also
iterate at most n times, since the number of integral variables increases after each outer loop.

The non-trivial step in the algorithm is the minimization of rM(S)− y(S) over A = {S ⊆ X :
i ∈ S, j /∈ S}. Since rM(S) − y(S) is a submodular function, minimization can be implemented
in polynomial time [16, 30].

Finally, we need to show that the expected value of the final solution is E[f(S)] ≥ F (y). In each
step, we choose randomly between F (y+) = F y

ij(ε
+) and F (y−) = F y

ij(ε
−) where ε− < 0 < ε+. Let

y′ denote the (random) point obtained after one step. By convexity of F y
ij , using pε−+(1−p)ε+ = 0,

we obtain
E[F (y′)] = pF y

ij(ε
−) + (1− p)F y

ij(ε
+) ≥ F y

ij(0) = F (y).

By induction on the number of steps of the rounding procedure, we obtain E[f(S)] ≥ F (y∗) where
y∗ ∈ B(M) is the initial point and S is the final discrete solution.

3.3 Simplification for partition matroids

In the special case of a simple partition matroid, we can simplify the algorithm by essentially
skipping the pipage rounding stage. This type of matroid appears in many applications.

Definition 3.5. For a ground set partitioned into X = X1 ∪X2 ∪ . . . ∪Xk, the simple partition
matroid is M = (X, I), where

I = {S ⊆ X : ∀i; |S ∩Xi| ≤ 1}.

By the definition of the matroid polytope, we have P (M) = {y ∈ RX
+ : ∀i;

∑
j∈Xi

yj ≤ 1}.
Therefore, it is natural to interpret the variables yj as probabilities and round a fractional solution
by choosing exactly one random element in each Xi, with probabilities according to yj (we can
assume that y ∈ B(M) and hence

∑
j∈Xi

yj = 1 for each Xi). The following lemma justifies that
this works.

Lemma 3.6. Let X = X1 ∪ . . . ∪Xk, let f : 2X → R+ be a monotone submodular function, and
y ∈ B(M) where M is a simple partition matroid on X = X1 ∪ . . . ∪ Xk. Let T be a random
set where we sample independently from each Xi exactly one random element, element j with
probability yj. Then

E[f(T )] ≥ F (y) = E[f(ŷ)].

Proof. Let T be sampled as above and let ŷ = 1R. The difference between R and T is that in
R, each element appears independently with probability yj (and therefore R is not necessarily
an independent set in M). In T , we sample exactly one element from each Xi, with the same
probabilities. We claim that E[f(T )] ≥ E[f(R)].
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We proceed by induction on k. First assume that k = 1 and X = X1. Then,

E[f(R)] =
∑

R⊆X1

Pr[R]f(R) ≤
∑

R⊆X1

Pr[R]
∑
j∈R

f({j})

=
∑
j∈X1

Pr[j ∈ R]f({j}) =
∑
j∈X1

yjf({j}) = E[f(T )].

Now let k > 1. We denote T ′ = T∩(X1∪. . .∪Xk−1), T ′′ = T∩Xk and R′ = R∩(X1∪. . .∪Xk−1),
R′′ = R ∩Xk. Then

E[f(T )] = E[f(T ′) + fT ′(T ′′)] ≥ E[f(T ′) + fT ′(R′′)] = E[f(T ′ ∪R′′)],

using the base case for fT ′ on Xk. Then,

E[f(T ′ ∪R′′)] = E[f(R′′) + fR′′(T ′)] ≥ E[f(R′′) + fR′′(R′)] = E[f(R)],

using the induction hypothesis for fR′′ on X1 ∪ . . . ∪Xk−1.

Therefore, we can replace pipage rounding for simple partition matroids by the following
simple procedure.

Simple rounding.

• Given y ∈ RX
+ such that ∀i;

∑
j∈Xi

yj = 1, sample independently from each Xi exactly one
element: element j ∈ Xi with probability yj . Return the set T of the sampled elements.

4 Applications

4.1 Submodular welfare maximization

Here we describe an application of our framework to the Submodular Welfare Problem. First, we
review the problem and known results.

Social welfare maximization. Given a set X of m items, and n players, each of which has
a monotone utility function wi : 2X → R+. The goal is to partition X into disjoint subsets
S1, . . . , Sn in order to maximize the social welfare

∑n
i=1 wi(Si).

This problem arises in combinatorial auctions and has been studied intensively in recent years
[22, 20, 8, 11, 12, 26]. Before studying its complexity status, one needs to specify how the algorithm
accesses the input of the problem. Usually, an algorithm is allowed to ask certain queries about
the players’ utility functions. This leads to different oracle models of computation. The two types
of oracle most commonly considered are:

• Value oracle: returns the value of wi(S) for a given player i and S ⊆ X.

• Demand oracle: returns a set S maximizing wi(S) −
∑

j∈S pj for a given player i and an
assignment of prices pj .
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Previous work. In general, the problem is NP-hard to approximate within a factor of m1/2−ε for
any ε > 0, even in the demand oracle model. Positive results have been achieved only under strong
assumptions on the utility functions. A particular case of interest is when the utility functions
are submodular - this is what we call the Submodular Welfare Problem.

In the value oracle model, the greedy algorithm achieves a 1/2-approximation for all submod-
ular functions [22]. On the hardness side, it has been shown that a (1−1/e+ε)-approximation for
any fixed ε > 0 would imply P = NP [20]. This hardness result holds in particular for submodular
functions induced by explicitly given set coverage systems. It is also known that a (1− 1/e + ε)-
approximation would require exponentially many value queries, regardless of P = NP [26]. It was
an open problem whether a (1−1/e)-approximation can be achieved for all submodular functions.

In the demand oracle model, on the other hand, a (1 − 1/e)-approximation was presented in
[8]. This algorithm has been subsequently generalized to all fractionally subadditive functions
[11] and improved to 1− 1/e + δ, δ > 0, for submodular functions [12].

Our result. The Submodular Welfare Problem can be seen as a special case of SUB-M and our
algorithm can be used to give a randomized (1− 1/e)-approximation, thus resolving the status of
the problem in the value oracle model (this result first appeared in [32]). We briefly describe the
reduction to SUB-M (see also [22, 17]).

The reduction: For a given set of items A and number of players n, we define a ground set
X = [n]×A. The elements of X can be viewed as clones of items, one clone of each item for each
player. For each player i, we define a mapping πi : 2X → 2A,

πi(S) = {j ∈ A : (i, j) ∈ S},

which simply takes all the clones in S corresponding to player i. Given utility functions w1, . . . , wn :
2A → R+, we define a function f : 2X → R+,

f(S) =
n∑

i=1

wi(πi(S)).

It can be seen that if wi is submodular, then wi ◦ πi is submodular, and hence f is submodular
as well.

The problem of partitioning A = S1 ∪ S2 ∪ . . . ∪ Sn so that
∑n

i=1 wi(Si) is maximized is
equivalent to finding S =

⋃n
i=1({i} × Si) ⊆ X, containing at most one clone of each item, so that

f(S) is maximized. Sets of this type form a partition matroid:

I = {S ⊆ X | ∀j; |S ∩Xj | ≤ 1}

where Xj = [n]× {j}. Therefore, the welfare maximization problem is equivalent to maximizing
f(S) subject to S ∈ I.

Our algorithm yields a (1− 1/e)-approximation for Submodular Welfare, which is optimal as
we mentioned above. Moreover, we can simplify the algorithm by skipping the pipage-rounding
stage. This is possible because we are dealing with a simple partition matroid, as we discussed
in Section 3.3. The fractional variables are associated with elements of [n] × A, i.e. player-item
pairs, and it is natural to denote them by yij . Each set Xj = [n]×{j} consists of the all the clones
of item j. By Lemma 3.6, the fractional solution obtained by the continuous greedy algorithm
can be rounded by taking one random clone of each item, i.e. allocating each item to a random
player, with probabilities yij . Reinterpreting our continuous greedy algorithm in this setting, we
obtain the following.
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The Continuous Greedy Algorithm for Submodular Welfare.

1. Let δ = 1/(mn)2. Start with t = 0 and yij(0) = 0 for all i, j.

2. Let Ri(t) be a random set containing each item j independently with probability yij(t). For
all i, j, estimate the expected marginal profit of player i from item j,

ωij(t) = E[wi(Ri(t) + j)− wi(Ri(t))]

by taking the average of (mn)5 independent samples.

3. For each j, let ij(t) = argmaxi ωij(t) be the preferred player for item j (breaking possible ties
arbitrarily). Set yij(t+δ) = yij(t)+δ for the preferred player i = ij(t) and yij(t+δ) = yij(t)
otherwise.

4. Increment t := t + δ; if t < 1, go back to Step 2.

5. Allocate each item j independently, with probability yij(1) to player i.

4.2 The Generalized Assignment Problem

Here we consider an application of our techniques to the Generalized Assignment Problem (GAP).
An instance of GAP consists of n bins and m items. Each item i has two non-negative numbers
for each bin j; a value vij and a size sij . We seek an assignment of items to bins such that the
total size of items in each bin is at most 12, and the total value of all items is maximized. In [15],
a (1 − 1/e)-approximation algorithm for GAP is presented. Their algorithm is based on solving
an exponential sized linear program. The separation oracle for this LP is the knapsack problem
and one obtains an arbitrarily close approximation to it by using an FPTAS for knapsack. In
[12], it is shown that the LP integrality gap is in fact (1− 1/e + δ) for some constant δ > 0, thus
resulting in an improved approximation. It is also known that unless P = NP there is no 10/11
approximation for GAP [2].

Our techniques yield a simple (1− 1/e− o(1))-approximation algorithm for GAP, which does
not rely on the ellipsoid method or any other LP solving algorithms. Although this is known
to be a suboptimal approximation factor, the new algorithm is much more practical than the
(1 − 1/e + δ)-approximation of [12]. Our algorithm also generalizes to more general assignment
problems for which the factor 1− 1/e is known to be optimal.

The Separable Assignment Problem An instance of the Separable Assignment Problem
(SAP) consists of m items and n bins. Each bin j has an associated collection of feasible sets Fj

which is down-closed (A ∈ Fj , B ⊆ A⇒ B ∈ Fj). Each item i has a value vij , depending on the
bin j where it’s placed. The goal is to choose disjoint feasible sets Sj ∈ Fj so as to maximize∑n

j=1

∑
i∈Sj

vij .

Reduction to a matroid constraint. Let us review the reduction from [6]. We define X =
{(j, S) | 1 ≤ j ≤ n, S ∈ Fj} and a function f : 2X → R+,

f(S) =
∑

i

max
j
{vij : ∃(j, S) ∈ S, i ∈ S}.

2Sometimes GAP is defined with bins having specified capacities. Since the item sizes are allowed to vary with
the bin, one can scale them to reduce to an instance in which each bin capacity is 1.
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It is clear that f is monotone and submodular. We maximize this function subject to a matroid
constraint M = (X, I), where S ∈ I iff S contains at most one pair (j, S) for each i. Such a set
S corresponds to an assignment of set S to bin j for each (j, S) ∈ S. This is equivalent to SAP:
although the bins can be assigned overlapping sets in this formulation, we only count the value
of the most valuable assignment for each item.

The approximate greedy process. Before, we describe our algorithm for SAP, we need to
discuss a generalization of our framework. Let us consider a setting where we cannot optimize
linear functions over P (M) exactly, but only α-approximately (α < 1). Let us consider the
continuous setting (Section 2.3). Assume that in each step, we are able to find a vector v(y) ∈
P (M) such that v(y) · ∇F (y) ≥ α maxv∈P (M)(v · ∇F (y)). By Eq. (5), v(y) · ∇F (y) ≥ α(OPT −
F (y)). This leads to a differential inequality

dF

dt
≥ α(OPT − F (y(t)))

whose solution is F (y(t)) ≥ (1− e−αt)OPT . At time t = 1, we obtain a (1− e−α)-approximation.
The rest of the analysis follows as in Section 3.1.

Implementing the algorithm for SAP. The ground set ofM is exponentially large here, so
we cannot use the algorithm of Section 3 as a black box. First of all, the number of steps in the
continuous greedy algorithm depends on the discretization parameter δ. Following the remark
at the end of Section 3.1, we choose δ polynomially small in the rank of M, which is n here.
The algorithm works with variables corresponding to the ground set X; let us denote them by
yj,S where S ∈ Fj . Note that in each step, only n variables are incremented (one for each bin
j) and hence the number of nonzero variables remains polynomial. Based on these variables, we
can generate a random set R ⊆ X in each step. However, we cannot estimate all marginal values
ωj,S = E[fR(j, S)] since these are exponentially many. What we do is the following.

Observe that
ωj,S = E[fR(j, S)] =

∑
i∈S

E[fR(j, i)]

where
fR(j, i) = max{vij −max{vij′ : ∃(j′, S) ∈ R; i ∈ S}, 0}

is the marginal profit of adding item i to bin j, compared to its assignment in R. For each item
i, we estimate ωij = E[fR(j, i)]. We choose the number of samples to be (mn)5 so that the error
per item is bounded by OPT/(mn)2 with high probability. We have ωj,S =

∑
i∈S ωij for any set

S; our estimate of ωj,S is accurate within OPT/(mn2). Finding a maximum-weight independent
set I ∈ I means finding the optimal set Sj for each bin j, given the weights ωij . This is what
we call the single-bin subproblem. We use the item weights ωij and try to find a set S ∈ Fj

maximizing
∑

i∈S ωij . If we can solve this problem α-approximately (α < 1), we can also find an
α-approximate maximum-weight independent set I. Our sampling estimates add an o(1) error
to this computation. As we argued above, we obtain a (1 − e−α − o(1))-approximation for the
Separable Assignment Problem. We summarize the algorithm here.

The Continuous Greedy Algorithm for SAP/GAP.

1. Let δ = 1/n2. Start with t = 0 and yj,S(0) = 0 for all j, S.
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2. Let R(t) be a random collection of pairs (j, S), each pair (j, S) appearing independently
with probability yj,S(t). For all i, j, estimate the expected marginal profit of bin j from
item i,

ωij(t) = ER(t)[max{vij −max{vij′ : ∃(j′, S) ∈ R(t); i ∈ S}, 0}]

by taking the average of (mn)5 independent samples.

3. For each j, find an α-approximate solution S∗j (t) to the problem max{
∑

i∈S ωij(t) : S ∈ Fj}.
Set yj,S(t + δ) = yj,S(t) + δ for the set S = S∗j (t) and yj,S(t + δ) = yj,S(t) otherwise.

4. Increment t := t + δ; if t < 1, go back to Step 2.

5. For each bin j independently, choose a random set Sj with probability yj,S(1). For each
item occurring in multiple sets Sj , keep only the occurrence of maximum value. Allocate
the items to bins accordingly.

Theorem 4.1. If we have an α-approximation algorithm for the problem max{
∑

i∈S ωij : S ∈ Fj},
for any bin j and any assignment of values ωij, then the Continuous Greedy Algorithm delivers
a (1− e−α − o(1))-approximation algorithm for the corresponding Separable Assignment Problem
with families of feasible sets Fj.

This beats both the factor α(1 − 1/e) obtained by using the Configuration LP [15] and the
factor α/(1 + α) obtained by a simple greedy algorithm [6, 17].

The Generalized Assignment Problem Special cases of the Separable Assignment Problem
are obtained by considering different types of collections of feasible sets Fj . When each Fj is
given by a knapsack problem, Fj = {S :

∑
i∈S sij ≤ 1}, we obtain the Generalized Assignment

Problem (GAP). Since there is an FPTAS for the knapsack problem, we have α = 1 − o(1) and
we obtain a (1− 1/e− o(1))-approximation for the Generalized Assignment Problem.

Matroid constraint on the bins. Consider GAP with the additional restriction that at most
k of the given m bins be used in assigning items to. We can capture this additional constraint
by altering the matroid M as follows. Previously, a set S was defined to be independent iff
|S ∩{(j, S) | S ∈ Fj}| = 1 for each bin j. Now a set S is independent iff |S ∩{(j, S) | S ∈ Fj}| = 1
for each bin j and |S| ≤ k. It is easy to check that this is also a matroid constraint. More generally
let B = {1, . . . ,m} be the set of bins and M′ = (B, I) be a given matroid on B. A considerable
generalization of GAP is obtained by asking for a maximum profit feasible assignment of items
to a subset of bins B′ ⊆ B where B′ is required to be an independent set in I. This constraint
can also be incorporated into the reduction by lettingM be the matroid where S is independent
iff (i) |S ∩ {(j, S) | S ∈ Fj}| = 1 for each bin j, and (ii) BS ∈ I where BS = {j | (j, S) ∈ S}.
Once again it is easy to check the M is a matroid. The algorithm can be implemented in a way
similar to the algorithm for SAP.

5 Conclusions

Our algorithm uses randomization in an intrinsic way since it works with the extension F (y) =
E[f(ŷ)]. It is an interesting open problem as to whether a (1 − 1/e)-approximation can be
obtained using a deterministic algorithm in the value oracle model. In some special cases, such
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as coverage in set systems, one can use an explicit extension function F ′(y) that can evaluated
deterministically and use this instead of E[f(ŷ)] — in fact, Ageev and Sviridenko [1] use explicit
functions for several problems. The pipage rounding that we described is randomized but one
can use a deterministic variant [1, 6]. Therefore, in some special cases, deterministic (1 − 1/e)
approximations can be achieved.

One could consider non-monotone submodular functions with the requirement that they are
non-negative. However, for such functions, even the unconstrained problem maxS⊆N f(S) is NP-
hard and APX-hard to approximate; the Max-Cut problem is a special case. Feige, Mirrokni
and Vondrák [13] give constant factor approximations for the unconstrained problem. For the
matroid constraint problem, the pipage rounding framework is applicable even to non-monotone
functions (as already shown in [1]). For non-monotone functions, the problem we need to consider
is maxS∈B f(S) where B is the set of bases ofM. The convexity of F y

ij holds even for non-monotone
functions. However, the continuous greedy algorithm for maximizing F requires monotonicity. For
specific special cases, one may be able to choose an extension and then apply pipage rounding. For
example, in [1], Max-Cut with given sizes on the partitions and related problems are addressed
in this fashion. It would be interesting to explore a more general framework for all non-monotone
non-negative submodular functions.

Pipage rounding [1] and dependent randomized rounding [31, 23] are based on rounding frac-
tional solutions to the assignment problem into integer solutions while maintaining the quality
of a solution that is a function of the variables on the edges of the underlying bipartite graph.
A number of applications are given in [1, 31, 23]. This paper shows that submodularity and un-
crossing properties of solutions to matroids and other related structures are the basic ingredients
in the applicability of the pipage rounding technique. We hope this insight will lead to more
applications in the future.

Finally, can we improve the 1/(p + 1) bound given by the greedy algorithm for maximizing
a monotone submodular function subject to the intersection of p matroids? The special case
of p = 2 is of much interest since the matroid intersection polytope is integral. Although the
continuous greedy algorithm is still applicable, pipage rounding does not generalize.

Acknowledgments: The last author would like to thank Uriel Feige, Mohammad Mahdian and
Vahab Mirrokni for inspiring discussions concerning the Submodular Welfare Problem. We thank
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[12] U. Feige and J. Vondrák. Approximation algorithms for allocation problems: Improving the
Factor of 1− 1/e. Proc. of IEEE FOCS, 667–676, 2006.
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A Analysis of Greedy for p-independent families

We give an analysis of the greedy algorithm for maximizing a submodular function subject to
a p-system, that is maxS∈I f(S) where (X, I) is a p-system and f : 2X → R+ is a monotone
submodular set function. Fisher, Nemhauser and Wolsey [14] showed that the natural greedy
algorithm has a tight approximation ratio of 1/(p + 1). In [14], a proof is given for a special case
when the I is induced by the intersection of p matroids on X; it is mentioned that the proof
extends to an arbitrary p-system using the same outline as that of Jenkyns [19] who showed a
bound of 1/p if f is modular. As far as we are aware, a formal proof has not appeared in the
literature and hence we give a proof here for the sake of completeness. The proof also easily adapts
to give a bound of α/(p + α) if only an α-approximate oracle for f is available (here α ≤ 1). We
mention that Goundan and Schulz [17] have in independent work adapted the proof from [14]
for intersection of p matroids to the approximate setting. However, both the proofs use an LP
relaxation and differ from that of Jenkyns [19] whose scheme we follow.
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We recap the definition of a p-system in more detail below. For a set A ⊆ X, a set J is called a
base of A if J is a maximal independent subset of A; in other words J ∈ I and for each e ∈ A−J ,
J + e 6∈ I. Note that A may have multiple bases, and further, a base of A may not be a base of a
superset of A. (X, I) is said to be a p-system if for each A ⊆ X the cardinality of the largest base
of A is at most p times the cardinality of the smallest base of A. In other words, for each A ⊆ X,

maxJ :J is a base of A |J |
minJ :J is a base of A |J |

≤ p.

Special cases of p-systems: We mention three special cases of independence families that are
special cases of p-systems in increasing order of generality.

• Intersection of p matroids.

• p-circuit-bounded families considered in [19]3. A family I is a p-circuit-bounded family if
for each A ∈ I and e ∈ X − A, A + e has at most p circuits. Here, circuit is a minimally
dependent set.

• p-extendible families defined in [24]. A family I is p-extendible if the following holds:
suppose A ⊂ B, A,B ∈ I and A + e ∈ I, then there is a set Z ⊆ B − A such that |Z| ≤ p
and B − Z + e ∈ I.

It can be shown that I is the intersecton of p matroids implies that it is p-circuit-bounded which
in turn implies that it is p-extendible which in turn implies that it is a p-system. Examples show
that these inclusions are proper [25]. We mention that although p-systems are more general than
p-extendible families, the latter seem to appear more naturally in applications.

Analysis of Greedy: We first define the greedy algorithm formally.

Algorithm Greedy:
S ← ∅, A← ∅
repeat

A← {e | S ∪ {e} ∈ I}
If (A 6= ∅) then

e← argmaxe′∈AfS(e′)
S ← S ∪ {e}

Endif
until (A = ∅)
Output S

It is easy to see the greedy algorithm can be implemented using a value oracle for f and a
membership oracle for I. We let e1, e2, . . . , ek be the elements added to S by Greedy and for
i ≥ 0, we let Si denote the set {e1, e2, . . . , ei}. Let δi = f(Si) − f(Si−1) be the improvement in
the solution value when ei is added. Note that f(Sk) =

∑
i δi. Since f is submodular, we observe

that δ1 ≥ δ2 ≥ . . . ≥ δk. We now prove that Greedy yields a 1/(p + 1) approximation. Fix some
optimum solution O. We show the existence of a partition O1, O2, . . . , Ok of O with the following
two properties:

3In [19] no name is suggested for these families.
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• for 1 ≤ i ≤ k, p1 + p2 + . . . + pi ≤ i · p where pi = |Oi|, and

• for 1 ≤ i ≤ k, piδi ≥ fSk
(Oi).

Assuming that we have a partition of O with the above properties, we prove the desired bound
on the performance of Greedy. First we need a simple claim.

Claim A.1. p
∑

i δi ≥
∑

i piδi.

Since δ1 ≥ δ2 ≥ . . . ≥ δk, and
∑

1≤j≤i pi ≤ i · p for each i, the maximum attainable value for∑
i piδi is to set pi = p for each i. See [19] for a more formal proof of a similar claim.
We thus have,

p
∑

i

δi ≥
∑

i

piδi ≥
∑

i

fSk
(Oi) ≥ fSk

(O) ≥ f(O)− f(Sk).

We use submodularity in the third inequality above. Since
∑

i δi = f(Sk), the above inequality
implies that (p + 1)f(Sk) ≥ f(O) and hence f(Sk) ≥ f(O)/(p + 1).

We now prove the existence of the desired partition of O. Define sets A0, . . . , Ak as follows.
Ai = {e ∈ O − Si | Si + e ∈ I}. Note that A0 = O, Ai ⊆ Ai−1 for 1 ≤ i ≤ k, and Ak = ∅; the
last fact is true since the Greedy algorithm stops only when no more elements can be added to its
current set. We define Oi = Ai−1 \Ai. It follows that O1, O2, . . . , Ok is a partition of O. We claim
that Si is a basis for Si ∪Oi. To see this, let e ∈ Oi; Either e ∈ Si or e ∈ Ai−1 and Si ∪ {e} 6∈ I.
In fact this argument shows that Si is a basis for the set Xi = O1 ∪O2 ∪ . . .∪Oi ∪Si. Since I is a
p-system, we have |O1 ∪O2 ∪ . . .∪Oi|/|Si| ≤ p; note that O1 ∪O2 ∪ . . .∪Oi is independent since
it is a subset of O. Since |Si| = j and |O1 ∪ . . . ∪ Oi| = |O1| + . . . + |Oi|, we get the inequality
that p1 + . . . + pi ≤ i · p. Now we argue that δi ≥ fSk

(Oi)/pi. Since Oi ⊆ Ai−1, each e ∈ Oi was
available as a candidate for Greedy when augmenting Si−1. From the choice of Greedy it follows
that δi ≥ fSi−1(e) for each e ∈ Oi and hence

piδi ≥
∑
e∈Oi

fSi−1(e) ≥ fSi−1(Oi) ≥ fSk
(Oi).

We use submodularity of f in the last two inequalities. This finishes the proof.

Remark. The proof is simpler and more intuitive for the special case of p-extendible systems.
We do not need Claim A.1. Instead we inductively define a sequence of sets O = T0 ⊇ T1 ⊇ . . . ⊇
Tk = Sk such that for 1 ≤ i ≤ k, Si ⊆ Ti and Ti ∈ I. We let Oi = Ti−1 − Ti which implies that
O1, . . . , Ok partition O − Sk. The set Ti is defined from Ti−1 as the follows: since Si−1 ⊆ Ti−1

and I is a p-extendible family, there is a set Oi of at most p elements in Ti−1 − Si−1 such that
Ti = Ti−1 −Oi + ei is independent. Since any of the elements in Oi was a candidate for ei in the
greedy step, δi ≥ 1

pfSi−1(Oi). This leads to the desired bound.

Greedy with an approximate oracle for f : In some settings, the greedy step in picking
the element with the largest marginal value can only be implemented in an approximate way.
Suppose we are only guaranteed that in each greedy step i, the element ei picked in that step
satisfies fSi−1(ei) ≥ α maxe∈Ai fSi−1(e) where Ai is the set of all candidate augmentations of
Si−1. Here α ≤ 1. The above analysis can be adapted easily to show that the bound on the
performance now becomes α/(p + α). We sketch the argument. Claim A.1 relies on the fact
that δ1 ≥ δ2 ≥ . . . ≥ δk. This holds true for an exact oracle for f but may not hold true for an
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approximate oracle in certain situations. However, one can modify the greedy algorithm slightly
to have this property as follows; suppose δi > δi−1 at some stage. Let j be the smallest index such
that δj > δi. We can rewind the greedy algorithm to iteration j + 1 and pick ei in that iteration
instead of ej+1 thas was previously picked by the approximate oracle. This can only improve
the solution. We can ensure polynomial running time by not rewinding unless the improvement
is substantial. In the second part of the argument for an exact oracle, we had the inequality
piδi ≥ fSi−1(Oi). With an α-approximate oracle this changes to piδi ≥ αfSi−1(Oi). Therefore,

p
∑

i

δi ≥
∑

i

piδi ≥
∑

i

αfSk
(Oi) ≥ αfSk

(O) ≥ α(f(O)− f(Sk)),

which implies that f(Sk) ≥ α
p+αf(O).

Remark. For p-extendible systems, the Greedy algorithm (without any need for backtracking as
above for p-systems) gives a bound of α

p+α with an α-approximate oracle. The only change in the
proof for p-extendible systems with an exact oracle (see the previous remark) is to replace the
inequality pδi ≥ fSi−1(Oi) by pδi ≥ αfSi−1(Oi).
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